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SUMMARY f_ _ _

The theoretical analyses of the impact of

pellets with thin plates and the resulting expansion flow

is presented in this report. The analysis is based on

the impact model discussed in reference l, in which what

are hoped to be secondary effects, are neglected. The

short term expansion of the plasma, the interaction between

shock and rarefaction waves, and the long term expansion

are investigated in some detail.

Engineering design data for the protection of a

space vehicle from meteor impacts are presented on the

basis of the theoretical calculations carried out on the

impact model.

Experimental procedures are outlined to check the

theoretical results in the velocity range of 7 - i0 km/sec.,

which are obtainable in the laboratory. Further theoretical

analyses are indicated which would allow for a more refined

model and take temperature effects into account.
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1.0 INTRODUCTION

The development of protective systems against

meteoroid impacts for space vehicles cannot be carried out

experimentally because meteoroid velocities exceed those

attainable experimentally with macroscopic particles. In

order to design a protection system, it is necessary to

develop an analytical model which will allow prediction of

impact effects, to check this model at velocities which

are reliably attainable in the laboratory, and to hope that

it will satisfactorily predict higher velocity effects.

This hope can be realized only if the nature of the physical

processes do not alter in the velocity regime of interest,

that is from the 7 - i0 km/sec, of the laboratory, to the

72 km/sec, which is said to be the maximum meteoroid

velocity (Ref. 4).

A series of changes does in fact take place in

the impact processes in the velocity range from zero up to

5 km/sec, as the pressures generated range from those which

produce only plastic deformation, up to those which vaporize

and ionize the impacting materials.

Since the minimum meteoroid velocities are

adequate to cause vaporization on impact, there is good

reason to believe that a single model may be applicable

over the entire range of meteoroid velocities unless the
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astronomical temperatures and pressures generated in the

higheg_rangelof impact veloCitles initiate fusion reactions with

suitable materials, so introducing another physical process.

In_1946, Whipple (reference ll)suggested

that the kinetic energy of a meteoroid could be used to destroy

it on impact with a bumper, or shield, spaced a distance away

from the main vehicle skin. The thickness of such a bumper

might need to be only a fraction of the size of the meteoroid,

provided the impact velocity and spacing were large.

This report and its predecessor (ref. i) describe

the analysis of a model for %he end-on impact of a cylinder

on a thin plate, assuming that the impact velocity is sufficient

to vapourlze the primary shocked region (figure 4.1). For

most materials this means velocities exceeding about I0 km/sec.,

although a few would vapourize at about half this velocity.

The objective of the research program to be

discussed in this report is the development for engineering

design purposes, of an adequate method of predicting bumper

plate effectiveness. The problem may be divided into various

distinct phases. The first concerns the initial states

generated by impact in both the bumper and the colliding

particle. Confining our attention to the high velocity

range of the spectrum associated with meteors, we may make

the observation that the dominant phenomena are the impact

generated shock waves which proceed ahead of any other
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disturbance spreading throughout the bumper and colliding

particle. This approach assumes the validity of classical

fluid mechanics, and has been used extensively by workers

at Los Alamos (refs. 2 and 3) to derive from measured shock

wave characteristlcs, the appropriate equations of state

for compressed metals, and by Bjork (_@f_ _) and others for

analyzing hyperv_loclty impact phenomena. In order to

apply this relatively simple analytical model to impact,

losses arising from fracture, vapourization, ignition etc.

are neglected, and the shock assumed to behave as it would

in an ideal medium with perhaps an additional complexity of

a modified equation of state.

The conditions generated at the instant of

impact, will be subsequently distributed in time quite

differently depending on whether the processes are confined

to one dimension or allowed to develop in a general

4
three-dimensional manner. Bjork employed a computer

solution to obtain numerical answers to specific cases,

while in order to obtain an insight into the role of various

parameters a previous report (ref i_) performed under this

study contract assumed impact shocks of sufficient strength

that the standard strong shock assumption of limiting

density ratio could be made. These assumptions allowed

quite simple analytical expressions to be developed for

impact induced thermodynamic states.
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The theoretical analysis so far completed has

opened up a number of experimental avenues of approach

to check the original theoretical model. Refinements

and additional effects, such as ionization, can then be

considered in a re-appraisal of the original theoretical

model.
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2.0 NOMENCLATURE
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- sound speed - mm/_sec (i.e. km/sec).

- specific internal energy- kilocal/gm

- pressure - megabars

- left and right running rarefactions

- inward running rarefaction

- radius - mm., radial coordinate

- left and right running shocks

- entropy

- time- sec. or _sec

- temperature - OR or OK

- element or particle velocity, relative to unshocked

material, mm/_ se c

- pellet velocity, relative to bumper - mm/usec

- particle velocity, absolute (relative to original

bumper ) mm/_sec

- shock speed, relative to unshocked material,

mm/_ec

- axial coordinate, axial distance, mm.

- bumper thickness - mm.

- Cp/C v or polytropic exponent

- density gm/cm 3

_ B÷l_Bo '
- %o

_ p+lepo'
_B +l eBo
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Subscripts

B - bumper

P - pellet

o - unshocked condition

A - axial

c - cylindrical

r - radial
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3.0 APPLICATION TO VEHICLE ENGINEERING DESIGN

The information required by the engineer

attempting to design a protection system for a space vehicle

so that it will be able to complete its mission with an

acceptably low probability of destruction by an impacting

meteor is drawn from many branches of science and mathematics.

To design a protection system that would be I00% reliable

is vir_ually impossible, since he would require precise

information regarding the characteristics of all meteors,

their composition, mass, density, shape, velocity, and in

particular their position in space at any time. In addition

he would require knowledge of the real physical processes

which occur when such a meteor impacted against some

arbitrary bumper material so that he could construct the

main vehicle hull to withstand the resulting forces exerted

on it.

The information we have at our disposal is

rather vague in nature and also somewhat uncertain. From

observation of meteors entering the earth's atmosphere, and

lately from information relayed to the groundby satellites

in near earth orbits, astronomers and physicists have made

order of magnitude predictions of the composition of

meteors. These predictions vary, depending on source,

from 5 x 10 -2 gm/cc for the so-called dust-ball meteor to

2-10 gms/cc for the stony or metallic meteor. Reasonably
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good agreement has been reached by scientists engaged in

the prediction of the velocity range of meteors; it is

generally conceded that most meteors have a velocity

between Ii and 72 km per second with relatively large

concentrations in the 20 km per second range and in the

40 km per second range. Other investigations indicate

that meteors are not distributed uniformly in space, and

in addition the size and velocity of meteors in dependent

on position in space. It is expected that relatively small

meteors, with p_.05 gm/cc, would _e encountered on missions

involving earth orbits; the majority of these would

presumably be in orbit about the earth and hence their

velocity could be predicted reasonably accurately. In

addition to the random distribution of meteors in space,

there appears to be a large concentration of meteors in

certain regions within the solar system as demonstrated

by the marked increase of the number of meteors entering

the earth, s atmosphere at particular times of the year.

This zone of concentration appears to be in the plane

containing the sun and the majority of the planets, with

the numbers decreasing with distance from this plane.

This report does not attempt to provide the

designer with the type of precise information he normally

expects when asked to design a system to perform a particular
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function with a high degree of reliability. It does,

however, in the opinion of the authors, provide the best

information available based on current knowledge of the

meteor problem. Many assumptions and approximations have

been made in the analysis leading to the design data

presented here, some out of expedience in order to obtain

early, albeit crude solutions, (i.e. the assumption of

cylindrical meteors with their velocity vector along the

axis of symmetry) and some out of necessity to make the

problem tractable to analytical analysis, or to fill gaps

in the present day knowledge of the complex physical processes

occurring in the vapourization and expansion of materials

undergoing hypervelocity impact.

To provide an adequate meteor protection

device the designer must first decide on the characteristics

of the "maximum acceptable" meteor; that is, he must decide

on the size, density andvelocity of the meteor he wishes

to protect against. The probability of encountering a

meteor of a particular size, density and velocity is

dependent on the particular mission and size of the space

craft; the protection system must be so designed that the

chance of encountering a larger, faster or slower, or more

dense meteor than that decided upon, which would penetrate

the protection system, is consistent with the acceptable

chance of failure of the mission.
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Having chosen the characteristics of the

meteor, i.e. the minimum velocity and maximum size and

density which would likely be encountered, the information

contained in figure 3.1, will give the minimum thickness

necessary for a given bumper material to completely vaporize

the impacting meteor. For the range of meteor's likely

to be encountered it will be found that the bumper thickness

will be limited by structural considerations in which case

the minimum density of the bumper material can be determined

from figure 3.1. The critical pressure below which the

pellet or meteor material would not vaporize was taken

to be approximately equal to 1.5 x 106 psi. This figure

is well above the vapor pressure of most materials.

The polytropic exponent (_) relating pressure

and density of the vaporized meteor material was taken

as 3, a value currently thought to be most representative

of the highly shocked impact states.

Once the bumper material and thickness have

been chosen to satisfy the conditions necessary to vaporize

the meteor, the spacing of the bumper from the vehicle skin

must be determined. The spacing will have to be large

enough to permit the expansion of the highly compressed,

highly energized plasma to an acceptably low pressure and

energy level consistent with the design of the main vehicle

hull. The spacing of the bumper then will depend on the
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capacity of the skin to absorb energy and impulsive pressure

loading and on the residual energy, and pressure distribution

in the "spray".

Figures 3.2 & 3".4 show the spacing that is required

knowing the maximum velocity, density, and size of the meteor

and the maximum pressure the skin can withstand at a point.

If the rate at which the pressure is applied or the impact

loading is the critical value this also can be obtained

t
from the non-dimenslonal time coefficient --of figure 3.2.

s/v
Figure 3.3 indicates that the radial distri-

bution of pressure has a generally Gaussian shape, with

the peak value equal to that predicted by figure 3.3 and

decaying approximately as the inverse cube of the radius,

measured from the line of flight of the meteor axis. The

force exerted on the vehicle skin can then be determined

by the integration of these curves and checked with design

data. From these observations it is apparent that the

maximum spacing should be used, thereby reducing the peak

pressure and energy levels to a minimum at the vehicle

skin. The choice of _ = 3 will give a conservative

estimate of the spacing required both for maximum pressure

and impact loading as it is likely that this choice of

would be high for the vapourlzed material after a long

term expansion.
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The superficial nature of the._ simulation of

the actual expansion by the model used makes the detail

of the results calculated somewhat dubious, however, the

spatial and temporal distribution is broadly speaking

correct although the effect of the true nature of the

complex decay systems will certainly influence the detailed

shape of the curves. The assumption of uniform translation

of the expanding sphere (at the initial velocity of the

shocked media UB) introduces an obvious error in the results

since in general the total momentum delivered to the target

as a consequence of this assumption will exceed that of

the incoming meteor. If the imcomlng meteor shock

vapourizes an amount of bumper material equal to its own

initial mass the resulting expansion cloud would translate

with a uniform velocity as assumed. However, in general,

the mass of the shocked bumper material will be much less

than that of the meteor, particularly if the "maximum

acceptable" meteor is encountered, and hence a conservative

error is introduced into the analysis. This conservative

error would make the result more acceptable as design

data.
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4.0 GENERAL METHOD OF ANALYSIS

4.1 Initial Shock System

The impact of a particle with a bumper will

produce a complex shock wave pattern in both materials, as

the pellet is decelerated and the bumper material is

accelerated. For analysis, this complex shock system is

simplified (ref. I) by considering the impact of a cylindrical

pellet, end on, with a bumper much thinner than the pellet

diameter. The shock system is then taken as one-dimensional

within the bumper consisting of two plane shock waves, one

in the pellet and another in the bumper, as shown in

figure 4.2.1a.

The shock pressures, densities and velocities

must satisfy the dynamic equations of motion; in addition,

the compressed gas is assumed to obey the gas law P = eRT

and a polytropic relationship between pressure and density

P = A The application of standard analytical methods

(refs. 9, i0) then leads to the Rankin-Hugoniot relations.

If the strong shock density ratio is assumed @_o -_--T)'_+I

the_ following relationships can be shown (ref. I) to

exist.

a) Particle velocity behind the shock, relative to unshocked

material.

v +I eB

UB I+_ _ where _ _ _- +i ... 4.1a
P
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Up = o".uB ... 4.1b

b) Shock velocity, relative to unshocked material

_+I _p + 1
WB- 2 UB ; Wp - Up2

4.2a,b

c) Shock pressure, assuming PBo = PPo

PP = PB _ B+l _Bo. UB
=--7--.

= 0

_. 3a, b

UB2 R B

d) CvBTB - 2 - _B_ 1 TB ... 4.4a

2

CVp TP _ Up Rp
2 - p-i Tp

4.4b

e) Sound speed in shocked material

aB = B UB 4 5a
• _ • •

. /_p(_p -I) '
ap

: _/ Up _ 5b• • o °

The significance of particular values of

can be shown by taking a few numerical examples.

_B :Wp,

shock moves upstream at the same speed as the pellet moves

into the bumper, hence Sp

upstream face of the bumper.

exceeds the pellet velocity and the shock moves upstream

Consider

_Bo = _Po' hence O_ : I.

3. For _ = 3, wB : Wp = 2u B = V, so that the pellet

remains in the plane of the

For _ > 3, the shock velocity
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of the bumper. For _ < I (bumper less dense than pellet ,

the same effect can be found for _ < 3.

b) _ _ 2. For _ _ 2, aB_uB, and the fluid flow is

sonic or supersonic, so that rarefactions and small pressure

waves cannot flow upstream. Since the bumper shock reflects

at the bumper rear face as a rarefaction travelling upstream

at a velocity equal to aB, it will remain in the plane of

the downstream face of the bumper for _ = 2, and be swept

downstream for _ _ 2. Since _ does not enter the

relationship between a and u, its value does not alter

these deductions.

c) 2 < _ < 3. For values of _ between 2 and 3 the pellet

shock will remain inside the bumper and be overtaken by

the rarefaction wave. For_l the pellet shock will tend

to move upstream of the bumper and for _ i the pellet

shock will tend to move downstream of the bumper.

4.2 Initial Expansion Process

The initial expansion process has been

analysed assuming that the shock has not been decayed

by the rarefaction waves. This imposes a limit for the

time for the initial expansion processes to be valid.

The nature of the initial expansion depends on the value

of Z and _.
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For (_)._ _ I (assuming _ p = _ B = _ ) the

expansion flow takes place outside and downstream of the

bumper. This case was considered in Ref. i, and little

further work has been done on it since that report was

issued.

Figures 4.2.1b and c illustrate the type of

expansion flow, and figure 4.2.2 gives the spray cone angle

resulting from the expansion. The spray angle is given by

the axial velocity of a particle (UB) at the time it is

given the radial escape velocity (_--_2.aB). This angle

remains fixed (for strong shocks) since both uB and aB

decrease by the same factor as the shock decays.

For values of _ > I + _ , the expansion

process resembles the flow out of a nozzle or cavity,

since the release wave can move into the subsonic stream

of compressed medium. This material As enclosed by the

walls of the hole in the bumper and is fed by the pellet

shock as the pellet feeds into it. The arrival of the

bumper shock at the rear face of the _umper completes the

vaporization of the bumper; the shock reflects as a

centered rarefaction wave (in the x-t plane) whose head

moves into the compressed gas. This produces a jet or

stream of gas downstream of the bumper. The extreme

particle (forming the escape boundary and tail of the axial

rarefaction) moving at escape velocity with zero temperature,
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pressure and density, the others moving less rapidly and

with finite pressure and temperature. Since the jet is

in vacuum, a cylindrical release wave is formed which

moves inward, interacting with the axial wave and spreading

the jet radially, although with a lower escape velocity

than the axial wave since the action of the latter has

reduced the sound speed in the jet where it issues from

the cavity to a fixed value of 2
+I" a°"

Inside the converging radial (cylindrical)

rarefaction, the flow is one-dimensional and the velocities

and states can be calculated analytically since the wave

is centered. No attempt has been made to calculated the

interaction field flow analytically, but a numerical solu-

tion of the flow equations in finite difference form has

given a fairly accurate picture of the conditions existing

in this region. The inner and outer boundaries of the

interaction field can be derived analytically and their

location is calculated with fair agreement by the numerical

solution. Typical flow patterns and energy and momentum

distributions are shown in section 7.1 figures (7.1.8 to

7.1.12).

It should be realized that the flow conditions

are short term only, in that the shocked state is considered

as constant with time (although otherwise the flow is very
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"unsteady"). The validity of the model breaks down when

the pellet shock decays significantly due to interaction

with the rarefaction, or when the pellet trailing face

reaches the pellet shock and the latter reflects as a

rlght-moving rarefaction. Since the former occurs in the

time it takes the shock to travel only a few bumper thick-

messes, the illustrated flow pattern applies for distances

of the order of one or two pellet diameters downstream

of the bumper. Nevertheless, the model is essential

to show the initial stage of the expansion flow, which

governs its long term expansion, as described in section 4.4.

For some combinations of _ and _ , (for

example, _ _ 3, _ =I), the pellet shock moves upstream of

the bumper and a cylindrical release wave forms and

propagates into the shocked material behind the shock,

figure frO. As will appear in the next section however,

the time during which this takes place is limited by the

deceleration of the shock when the axial rarefaction

overtakes it, and it is swept back into the bumper by

the unshocked pellet. Consequently its main significance

appears at present to be as a possible experimental

indicator of the effective value of _ , since this wave

will splash pellet material onto the front face of the

bumper.



4.3 Rarefaction, Interaction and Shock Decay

For any value of B and _ the axial

rarefaction wave, initiated when the bumper shock reaches

the downstream side of the bumper, will overtake the pellet

shock and decay its strength. The time taken for this

to occur will depend on _ and _ .

Figure 4.3.1 illustrates the standard numerical

processes (refs. 9, I0) for the rarefaction wave interaction

and shock decay in the x-t plane. The entropy change

behind the decaying shock and across reflected interfaces

were neglected. The sound speed in the unshocked material

was assumed to be zero as was done in reference i.

Figures 7.2.3 to 7.2.6 show the post-shock

pressures as a function of the shock location in the pellet

from the original leading edge of the pellet for various

values of _ and _ The shaded areas indicate where

the shock is enclosed within the bumper.

Since the shock decay is accompanied by

shock deceleration the shock will eventually be swept

downstream of the bumper in all cases. For certain values

of N and _ the shock may initially progress upstream

of the bumper. Whenever the shock progresses outside the

bumper radial rarefaction waves will be initiated amd

tend to decay the shock strength.
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The time taken for the radial rarefaction

wave to reach the centre of the pellet was calculated as

a function of D/$ for various values of _ and _ , figures

7.2.8 and 7.2.10. This was done allowing for the axial

decay of the shock.

A stepwise numerical process is being

carried out at present to determine the decay of the shock

strength due to the radial rarefaction waves only.

Figure 3.1 was obtained from the results

of the axial decay analyses and show the critical pellet

length to thickness as a function of impact pressure for

= 3 and values of _.

4.4 Lon$ Term Expansion Process

The expansion of the gas cloud after the

pellet has been shocked and only expansion waves exist

f
_assuming expansion into a vacuum) is very complex. The

shocked states are non-uniform due to shock decay a_d

the shocked particles are released at non-uniform time

rates. The velocity and density distribution of the gas

cloud will depend on the length/diameter ratio of the

pellet and the bumper thickness/pellet diameter ratio,

even for similar bumper and pellet materials.
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A crude first approximation for the long

term expansion of the gas cloud was set up, considering

the gas cloud to be formed by the expansion of a sphere

of compressed gas into a vacuum. This approximation was

used to predict the stagnation pressure the vehicle skin

would receive at various spacings from the bumper plate

(figures 7.3.9 and 7.3o10).

In order to match as closely as possible

the short time expansion characteristics it was necessary

to translate the sphere as it expanded. The translational

velocity was taken as that of the shocked material which

will only be true for the centre of mass of the sphere if

the bumper material punched out has the same mass as the

pellet. However_the initial expansion was carried out

as though this were the case. The effect of a thin bumper

would require a small modification of the subsequent

expansion as a result of pellet shock decay.

The radial expansion velocity was taken as

the radial escape velocity associated with the cylindrical

release wave acting on the gas jet described in section 4.].

This value is (_i) times the axial escape velocity and

thus the gas cloud expands as an ellipsoid rather than

a sphere. Although this distortion is now being han d!e<_

analytically, it was decided to interpolate between the
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results of spherical expansion at axial escape velocity

and spherical expansion at radial escape velocity as a

first approximation.
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5.0 FURTHER THEORETICAL CONSIDERATIONS

Shock Decay

The shock wave decay due to an edge rarefaction

is now being analysed by a step by step graphical method

as no standard analytical approach to such an interaction

could be found. The combination of the axial and radial

rarefaction interactions and their result on the decay

of the shock strength should be combined to give the total

shock decay. No reasonable simple solution to this

problem has been found so far.

Gas Cloud Expansion

The one-dimensional region of the initial

expansion system both analytical and numerical could be

expanded to allow for the shock strength decay. In the

two-dimensional region the numerical computer solution is

now giving reasonably accurate results for the short time

velocity and density distribution. This program also

could be expanded to allow for the shock strength decay.

The solution of the long term expansion

process which was handled analytically by approximate

methods based on the expanding sphere, could be programmed

using the basic flow equation as it would be a self similar

solution of an ellipsoid. Such a solution, although subjec_t

to errors due to the finite difference approximation, would
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satisfy all three conservation laws and thus be an

improvement over the simple analytical solution. In

addition, by substituting the conditions calculated by

the two dimensional method at the time the end of the

pellet reaches the shock for the uniform sphere as

initial conditions, a better approximation to the physical

case could be obtained. Finally, the effect of radiation,

assuming transparent material, could be introduced into

the energy equation.

lonization

The use of the perfect gas equation of state to

evaluate the temperature of the compressed material is

probably the most significant approximation thermodynamically.

The shock process will transmit energy by molecular

collision and in the process will rupture the inter-

crystalline bonds; after a few collisions the molecular

motion will be random. Dissociation of polyatomic

molecules will occur next, followed by ionization, both

processes reducing the temperature of the shocked state

and altering the value of the gas constant. Not only

does ionization alter the temperature behind the shock,

but the strong-shock density relation used in the analysis

is in serious error as shown in reference 8, for strong

shock in argon.
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Effect of Finite Bumper Thickness

The reduction in pellet shock strength

and the effect on the subsequent flow of a two dimensional

bumper shock should be analysed.

The effect of shapes other than cylinders

needs to be considered. A cone would appear to be the

next shape in order of complexity, since it is still

axi-symmetrlcal. It is, in addition, one of the most

effective penetrators, so that it's study could well be

rewarding. Qualitatively extrapolating the effects which

appear from the analysis of the cylinderj the core would

seem to tend to retain a point as a result of decay of

the shock system, particularly for _ _ 3, as outlined

schematically in figure 5.1. The centre of the pellet

shock would decay more rapidly than the edges and a pointed

pellet would be the end product of the shock system.
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6.0 EXPERIMENTAL PROGRAM

The experimental program can be directed

in a number of ways_ as follows:

I) Physical studies of shocked media to determine equations

of state and flow characteristics of such media.

2) Verification of fluid dynamic analysis with shock tubes

simulating the models.

3) Impact tests to determine similarity between model and

actual impact, to establish suitable values for _ , and

to determine the effects of radiation, ionization, etc.

Any one of these programs will require

considerable time, staff, and equipment, it will therefore

be necessary to study those most likely to provide

corroboration of the theory and fruitful results as a

basis for further analysis.

Impact tests are already underway, and by

suitable choice of materials reasonable simulation of

meteoroid impact states should be achievable. It would

appear that arsenic, cesium, chromium, iodine, potassium

and sulphur would be suitable materials, all having

low total heats of vapourization.

Using such materials, tests will be carried

out at velocities of 8 km/sec and higher. Flash x-ray,

ion detectors and splash examination will be used to
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measure spray angle and distribution, which in turn will

help evaluate _ Quartz crystal pressure gauges,

thin film thermocouples and ballistic pendulum techniques

on the witness plate will be used to measure momentum and

energy distribution and pressure in the gas cloud as a

function of spacing.

Shock tube studies which in effect duplicate

the models analysed could be carried out within the state

of the art. Such studies could investigate the expansion

characteristics of a variety of substance, including water,

which would be expected to undergo a rapid change in

as it flashes into vapour. It could also be used to study

the edge decay of a shock by a cylindrical rarefaction,

and the spray angle resulting from the release behind a

travelling strong shock.



- 35 -

7.0 DETAILED ANALYSIS

7.1 Initial Expansion

The analysis of the initial expansion flow

assumes the shocked states as defined by equations 14

through 22 of reference i. The decay of the pellet

shock strength is neglected and the time of the initial

expansion analyses is limited to the time before the pellet

shock reaches the end of the pellet. With these assumptions

and limitations the initial expansion analysis can be

carried out assuming a constant shocked state of bumper

and pellet (_ assumed equal to i) material is being fed

into the expansion of the gas into a vacuum. The head

of the radial rarefaction wave was assumed to move radially

into the one-dimensional axial flow at the local acoustic

velocity, and swept downstream in an axial direction at

the local particle kinetic velocity. However, the

head of the radial rarefaction wave will in fact always

move normal to its own boundar_ The assumption that its

movement is purely radial simplifies the analysis for this

first approximation.

Figures 7.1.1 and 7.1.2 show in the (xy)

and (xt) planes respectively, the assumed conditions

existing in the shocked states prior to the initiation

of the expansion process.



- 36 -

I SP_CE
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IMPACT C.ONDtTIDN.S lOST PF(_O_ TC)TIIE FORMATION OF P_A,

The conditions after the formation of Rq

are illustrated in Figures 7.1.3 and 7.1._

Within the one-dimensional region of the

expansion process, the following relations govern the

flow.

I) The slope of any C characteristic is given by

x = u - a, 7.1.1
t

and 2) for any particular particle, u + -__2 .a

always remain constant, thus

must
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2 2

u + _°a = uo + _.a o
7.1.2

Combining and rearranging these equations in a manner

similar to that of Ref. 9 yields

2ao _ -i 2 x

u _+i + _+i u° +_+i t
7.1.3

and a =
2ao _-i _-i x

_+i + _ u° _+i t 7.1.4

dx

Since u = -- = local particle velocity
dt

dx 2 x _ 2ao _-i Uo
dt _+i t _+I + _+i 7.1.5

The standard solution for equations of this type yields

2

x = (uo + 2a°) t + Kt _+I
_-I 7.1.6

Equation 7.1.6 gives the general solution for the axial

d_splacement of the bumper particles downstream of the

rear face of the bumper; for the particular solution

for the particle distribution at a specific time after

impact, the arbitrary constant K is evaluated with

reference to Figure 7.1.5.

The head of the rarefaction R A sweeps

into the shocked bumper material with velocity (a o- Uo),

where ao _ the local sound speed, and u o is the

translational velocity of the shocked bumper state.



- 39 -

PATI-I OF S_PECIFIC

r

"X

I_ELF_ASEWAV¢ V_L_c-._T'/('a'_-LL°')

ESCAPE " " LLo÷_._0-.

[b_T_.cr SL)_FACE " LL_

_)L_MPE P-. PAI_TIC.LF:

F,c_ _,1,5"

Since all of the shocked bumper material is travelling

at the velocity u o at time t=o (note that here t=o is

taken as the time at which RA Js formed), an initial

position within the shocked state may be defined by

x = UotoJ where to varies from 0 at the rear face of

the bumper to (- _) at the contact region separating
WB

the pellet and bumper particles. The constant in

equation 7.1.6 is evaluated for the genera_ particle

initially at x = -Xo, where -$ _-Xo_ 0 , by computing

its value at the position x = (Uo-ao)t , t = to
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Thu s

and

+i
{4 +i_

K = - _; aot o
7.1.7

2
m

2ao) (_+I) to @ +i
x = (u° + t - aot o-1 yL-f- (7)

7.1.8

Combining 7.1.8 with 7.1.2 and 7.1.3 yields
Z-I

(2_)_ +12 ao _ 2 ao 7 1 9u = uo + _---T _---T " "

W-I

(2_%0)_+--Ya = ao 7.1.10

The centred cylindrical rarefaction _R C accelerates

peripheral shocked particles from the bumper to the

radial escape velocity as soon as they emerge from the

exit plane, excepting those particles accelerated to

-- Jthe axial escape velocity by R A. The head of R C

sweeps radially into the one dimensional flow regime of

"_A at the local sound speed Is sweptand itself

axially at the local particle velocity. (The cylindrical

rarefaction does not in fact sweep into the one dimensional

axial expansion purely radially, but in a direction

normal to its head. The assumption of radial motion

greatly simplifies the analysis although it introduces

some error in the wave shape, particularly near the

escape boundary and the bumper orifice). The inward

progression of JR C is given by

y - yo - Jadt + K 7.].11
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which on substitution from equation 7.1.10 and integration

yields 4-1
_+ih

Y = Yo -g+12 a°t (_o) + K , 7.1.12

JR C originates the instant any particles

emerge from the exit plane; its influence is therefore

felt by the plane of particles originally at a position

defined by x = -x o at t = - --_ (see figure 7.1.5), when

WB

sufficient time has elapsed for this plane of particles

to reach the exit plane. This time,

t = t' =t o 1 a
o

_+i

7.1.13

is found by setting x=o in equation 7.1.8. The constant K

in 7.1.12 is then evaluated by using the condition that

at this value of t, y = Yo, with the result
2

-_ -1

K - _+I aoto Z-I Uo + 22 ao TJZ) 7.1.14

Thus 2 _-]

Y Yo +_+i to _-i Uo 2 _-i ,toj_+l
= _ + _+i ao t ___#_.,2 a° (_'_i- ao uo'--_) - 2

7.1.]5

This expression used in conjunction with 7.1.8 defines,

for any value of t (i.e. elapsed time), and a range of

applicable values of to, the boundary separating the

axial and radial flow regimes.
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End of Bumper Flow

The pure bumper flow ceases when the contact

surface C reaches the exit plane x=o. The time

required for this to occur is obtained by setting x=o

in equation 7.1.8 and inserting the appropriate value

of to .

The position of the plane of particles in the

front face of the bumper at time of impact (t=ti) is

-_ . The position at t=o is (-6 + UB.i )X

WB

i e x $ (UB• • - I) 7.1.16
t-o wB

From equation 16, reference I, uB

wB

2

_B +I
, thus

x _ ZB -i
t=o - ([ ) 7 1 17

B +1 ' °

head of R A

The point of intersection of C

is, from figure 7.1.5

and the

x Z}_ ,-] u B Z-I 6 ;.i ]8
- _D +l (_B 1), t : _+--7a< ' "

or, using equation 15 and 20 from reference 1 and the

definition of

X 2 '6-1
_-(_-1) -i _+-----f., 2 .(o-,+_) ,!,

7 ]_ ] "-"
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Equation 7.1.$ becomes

2ao) _ r_+lx=O= (Uo+ t t
- l _-i-_' ao o

where

thus

t __-i £

o _+I aB
_-i

t = (_-i Uo + 2 _+I _-I $ )

ao _-_) • (_+_ a O

2

+i

7.1.20

7.1.21

or
t

V , Z +i]

7.1.22

Equation 7.1.22 is plotted in figure 7.1.6.

Momentum and Ener$y Density and Flux

The momentum density per unit volume of the

gas cloud downstream of the bumper plate is given by:

M = _ u 7.1.23

where @ and u refer to local conditions.

The distribution of particle velocity u

throughout the one dimensional axial flow is given by

equation 7.1.9.

The density distribution is calculated

assuming isentropic expansion in the one dimensional

axial rarefaction wave, viz. from

p = A_

_
_o o

7.1.24

7.1.25
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Also _o a2 7. I. 26
0

Po - _ +i o_2v2
2 _Bo (i+_)2 (equation 17, ref. I)

7.1.27

ioee
_ _ _+1 o_v 2

_o ao2 -_-- " (i--_-) • @Bo 7.1.28

2

2 _ Bo _ -1
and _ _-_+___I(____) 2 • (_o) 7.1.29

2 ao

Thus M is computed by combining 7.1.9 and 7.1.29. The

momentum flux Mf is defined by

Mf = Mu = _ u 2 7.1.30

and is obtained by combining (7.1.9) 2 and 7.1.29. The

significance of the momentum flux is seen on noting that

the pressure force exerted by the gas cloud on the

witness plate, or vehicle hull, is the result of the

reaction of the hull in producing a change in the

momentum of the gas cloud particles.

The energy density per unit volume is given

by the sum of the local particle kinetic energy and

the local residual thermodynamic energy, viz.

I u 2E : e (3 + cvT) 7.I_31

The kinetic energy term is similar to (7.1.30); the

thermodynamic energy is found by noting that
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/ga2

cVT- 7.1.32

]_ a2
Thus E - I 19u 2 + 7.1.33

2 I '

where the latter term is evaluation by substitution of

equations 7.1.i0 and 7.1.29 in 7.1.33.

The energy flux Ef is defined by

Ef = E.u = i u 3 + /)a 2
, 7.1.34

where equations 7.1.9, 7.1.10 and 7.1.29 are used in

evaluating 7.1.34.

Equations 7.1.23, 30, 21 and 34 are plotted

in figure 7.1.8 as a function of displacement with the

gas cloud. In figures 7.1.9, I0, ii and 12 an attempt

has been made to show the approximate relative distri-

butions of M, Mf, E and Ef through theone dimensional

axial flow, and also in the mixed radial and axial flow

regime. The distributions of M, Mf, E and Ef in the

two dimensional region outside the central one

dimensional core were approximated assuming the total

density increase outside the original cylindrical

boundary was equal to the decrease inside the original

cylindrical boundary.
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The momentum density represents the impulse

acting on a surface when struck by unit volume of the

gas, and the momentum flux gives the dynamic pressure

at any instant. The pressure, though very large, acts

for a very short time, and the dynamic resistance of

a material to such brief pressures is not known. The

impulse integrated over the duration of the flow, gives

the total momentum transferred on to the area of the

surface affected.

An interesting modification to the above

theory would be to let the shocked state velocity u be
o

zero and thus simulate the expansion that would result

if a highly energized gas were to suddenly be released

from a cavity into a vacuum. The analysis was carried

out for this bumper cavity model but not included here

because of its similarity to the general theory. It

is interesting to note that the free space expansion

was found to be bounded by a cone whose semi vertex

angle is given by @ = tan -I 2 Since this angle

depends only on the value of _ , a study of the spray

angle should give an indication of the effective

polytropic exponent _ .

It is significant that the spray angles

predicted by the bumper enclosed model are of the same

order as those observed in tests (Ref. 7). Once the
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short time flow is cut off by the arrival of the end of

the pellet, however, the cone flow angle will remain

the same until the flow at exit from the bumper becomes

subsonic. Since the radial expansion will take place

at the velocity 2 aexit, but the particle velocity will

drop below aexit, the spray angle will increase.

However, the density is very low at the periphery of the

cloud (of the order of I0 -I0 gm/cm3) and no measurable

splash would be expected outside the angle given by

the short time flow model.

A computer analysis of the initial gas

expansion was attempted based on the conservation

equations applied to a volume of unit area and length

equal to the grid spacing along the axis. The velocity

and state of the gas was given at the origin and the

wave front by the analytical solution previously

described in this section.

The rate of inflow of mass, momentum and

enthalpy to the control volume was taken as the arithmetic

average of the inflow at the beginning and end of the

time interval of calculations the properties at the end

of the time interval were calculated iteratively until

successive values differed by less than I_ throughout

the field.
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The computer results agreed closely with

the analytical results in the one-dimensional region,

however_difficulty was found in the two dimensional

region outside the central core (i.e. insufficient

storage space on the I_I0 computer).

It should be remembered that the initial

expansions analysis will only apply to distances downstream

of about 2 pellet diameters (i.e. before the pellet

shock reaches the end of the pellet). It is not likely

that this small spacing would be practical for meteor

protection, however, this initial expansion analysis could

be used to form the initial conditions for a long term

expansion analysis.

7.2 Rarefaction_Interactions and Shock Decay

At a time dependent on the bumper thickness,

the rarefaction wave reflected at the rear face of the

bumper will overtake the pellet shock. Once overtaken,

the pellet shock is weakened by the interaction of the

rarefaction wave and will slow down so that it is

eventually swept downstream through the bumper. Depending

on the values of _ and_ the pellet shock may initially

progress upstream of the bumper until the axial rarefacti©m

slows it down so that it will re-enter the bumper and
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pass out downstream. Whenever the pellet shock is

outside the assumed one-dimensional bumper radial rare-

faction waves will be initiated as the shocked material

expands radially outwards. These radial rarefaction

waVes will also tend to decay the pellet shock.

In the case of the meteoric impact it has

been demonstrated (Ref. I) that the pellet shock extracts

from the meteor kinetic energy considerably more energy

than that required to vapourize probable meteoric materials.

Eventually the pellet shock will be reduced to an elastic

wave due to the interaction with the rarefaction waves.

During this interaction the shocked state will gradually

be reduced from that of a highly ionized, near Fermi

gas state, through lower degrees of ionization,

dissociation (where applicable), pulverization (when

the energy extracted is less than that required to

vapourize, but greater than that required to destroy

crystal bonds), "chunking", and finally to that of a

shocked but intact solid. Complete breakdown of the

usefulness of the Whipple bumper shield occurs if the

final two states are reached by a decay process within

an impacting meteor.

Decay to the final state in an impacting

meteor by the radial rarefaction wave may be particularly

serious since the shock decays faster near the periphery



- 53-

forming, in the limit, when the pellet shock is reduced

to an elastic wave, a cup shaped crater in the meteor

which, on impacting against a solid wall, (i.e. the

vehicle hull) will form a crater similar to that formed

by a shaped charge.

The decay of the pellet shock is important

as it will fix the thickness and density of _he bumper

material necessary to vapourize a given pellet impacting

at a given velocity. The decay of the pellet shock

due to a combination of the axial and radial rarefaction

waves is extremely complex mainly due to the interaction

of the rarefaction waves with each other in the shocked

material. In order to obtain a workable analysis the

radial and axial rarefaction waves were considered

separately.

7.2.1 Axial Rarefaction Wave

Figure 7.2.1 shows a sahematic distance-

time diagram of the interaction between the pellet shock

and the overtaking centred rarefaction wave. The

axis was fixed in the unshocked pellet which was assumed

to be to the right of the bumper. This model made

the analysis of the interaction simpler by having the

waves moving in the positive x direction.
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It is assumed in the analysis that the

entropy was constant over the field considered and

therefore the reflected contact surfaces could be

neglected and a simple relation between the pressure

and the sound velocity obtained. The sound velocity

in the unshocked pellet was assumed to be zero and

the simple relations across a strong shock with limiting

density ratios were used (Ref. i). The first analysis

was done assuming the pellet and bumper had the same

density and ratio of specific heats.

The governing equations for the rarefaction

waves are:

n

Across a wave Ul + 2
_-i

-- 2

ai = u2 + _-I a2 7.2.1

Along a wave x _ u + a 7.2.2
t

The top sign indicates a right-running wave

and the bottom sign a left-running wave.

For any regions P2 _ (_2) = (a2)

Pl f;l a I

7.2.3

Across a shock w = _+i
2 Us

W

a
s

7.2.4

7.2.5
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For the contact surface between bumper and pellet to

maintain separation of the two media,

V

Ul.1 : 7.2.6

and from 7.2.4 and 7.2.5

: (_) val. 1

_ 2_
where /_- 2__ 1

7.2.7

The positions (OB) and (I.i) were then obtained from

7.2.2, 6, 7

4
X(oB) --(_Vy)_ 7.2.8

t(OB) : (0B)/v

x(1,1)= (__-_)_

t(l,l) = (_I)(__+_I I)(_)

At the head of the Rarefaction Wave:

= _ = (i-_) V
u Z V Uescape 2

7.2.9

7.2.10

7.2.11

7.2.12

Let Z = size of the grid, - by trial and error a reasonab!c

pressure drop was obtained by calculating over half the

interaction region. The computer was limited to a

az : 0 7.2.13
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grid of 15 by 15 so Z was set at 30 and i and J indexed

from i to 15.

From 7.2.6, 7, 12, 13

u(i+1,I) --U(z, i)

a(i+l,l ) = a(l,l )

- i (u(z.z)-uZ)
Z

7,2.1_

(_A) 7.2. ]-5

Now to obtain u(i,j ) and a(i,j ) in remaining regions if

I = J from 7.2.1, 4, 5, knowing 7.2.14 and 7.2.15

u(i+z, j+z) = (z+_) U(i+l, j)
+ (_I) a(i+Z,j) ]

7.2.16

a(i+1,j+l) = (_) u(i+1)(j+1) 7.2.17

if i _ j from 7.2.1 and _owlng 7.2.14, 15, 16 and 17

u(I+2, J÷l) _ n(i+l,j+l) + u(i+ 2 j)+ 2
, _-1

a(
i+2, j)-a(±+l 'j+l)__

7,2.18

a(i+2, j+l) = _ (i+l,j+l) + (u(1+2, j ) - u(i+l)(j+l) )

+a(i+2, j)_ 7.2.19
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The pressures in the regions of interest

(i.e. for i + J) from 7.2.3 and knowing 7.2.7 and 19

P(i+l j+l): P(I i) _a(i+l)(j+l)) 2-_I
, , a(l,l) 7.2.20

where p(l,l) = pw Us = (_)ff V2 7.2.21

To locate the positions x(i,j ), t(i,j ) knowing u(i,j )

and a(i,j ) from 7.2.2, 4, 5, and knowing 7.2.8, 9, i0,

and II

i

t(i+l,l) : 2(a(i+l,l) _(x(i,l)-XOB)- u(i+l,l)(t(l,l)-t0B)_'"

+ _ toB + t(i,l 7.2.22

knowing 7.2.22

x(i+l,l ) : xOB + (t(i+l,l)- tOB)(U(i+l,l)+ a(i+l,l ))

7.2.23

±fi=j

From 7.2.2, 4 and 5 knowing 7.2.22, 23

t(i+l,j+l ) =
x(i+l j)-x(i,j ) + (_+1/ _a

' " 2_" (i+l,j+l)t(i,j)

[(_+l_2_a(i+l,j+l) - u(i+l,j+l)

- t(i+l,j)(u(i+l,j+l ) + a(i+l,j+l ))

7.2.2_
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knowing 7.2.24

x(i+l,j+l ) = x(i+l,j) + (u(i+l,j+l) + a(i+l,j+l ))

•.. (t(i+l,j+l) - t(i+l,j ))
7.2.25

if i_ j

From 7.2.2 and knowing 7.2.22, 23, 24 and 25

t(i+2, j+l)

i

2a(i+2, j+l)
_x(i+l, j+l)-X(i+2, j)-u( i+2, j+l)''"

knowing 7.2.26

i+l,j+l)-t(i+2 ,j))+2 t(1 i+l,j+l)+t(i+2, j)J_
(t(

7.2.26

x(i+2, j+l ) = x(i+2, j) + (t(i+2, j+l)-t(i+2, j) )

•'' (u(i+2, j+l ) + a(i+2,j+l ))
7.2.27

From the above analysis u, a, p can be obtained for the

regions of interest where i=j. The corresponding position

along the shock can be obtained from x and t.

Figure 7.2.3 shows the decay of the shock
i

pressure with pellet length traversed by the shock plotted

in the non-dimensional form of P /_vs. x . The decay
I
pv2

of the pellet shock with pellet length can be

seen to be a function of _, _, V, and _ The shock
!
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position relative to the bumper is also indicated. For

> 3 the shock will initially progress upstream of the

bumper then as the shock decays it will pass through the

bumper and progress downstream. For _ _ 2 the shock

will initially pass downstream of the bumper. It should

be noted that when the shock is outside the bumper the rate

of decay will be greater than shown due to the action of the

radial rarefaction waves.

The auxiliary curves on the right of figures 7.2.3

show the relationship between particle velocity and initial

pressure for various initial densities and _ 's.

It can be seen from figure 7.2.2 that a different

analytical solution must be used to determine the positions

t(i,l ) and the regions u(i,l ), a(i,l ). Once theseX(i_l)J

values have been determined the same analytical solution

used previously for the interaction will be valid if
P

and p_ are substituted for _ and p o
t_ O

The reflected rarefaction waves from the contact

surface were neglected for this a_alysis in order to

remain within the storage requirements of the computer.

The ratio of sound speeds across _he contacL surface

can be obtained from the shocked Mach Numbers (reference I)

app =_p(_p-l)(_B+i) YBO_ 1/2
aB B(_B-I)(_p+I) _Po_
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and

where

ap = [ aB

(3" = +i _Po

7.2.28

Position 0B:

7.2.29

t0B - X0B
V

7.2.3O

In region S(I )

from
us(l) = V - u B : Up

and Up =(_u B (ref. I)

o_

_(_) : (T-j-@)v 7.2.31

_B -I V

as(l) - 2 _ B(I +(_" )
7.2.32

Position S(l )

from 7.2.2 and knowing 7.2.29, Z0, 31 and _,-2°

_-XoB + to B (Us(1) + as(]))

ts(1)- as(1 )

7 •2o ,2_5

Xs(1): & + _s(l) t_(1) 7.2, .58-
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In region s(i)

Introduce grid size Z and variable i

as(i+l ) = as(l) (_)
7.2.35

from (1)

2

Us(i+t) = Us(i ) - _ (as( i ) - as(i+l)

7.2.36

Position s(i ) from 7.2.2

s(i+i)

_s(i) - Xos Us= • ., .+. (i+_)
-as(i+i) " as(i+l)

(rOB Tt I) ÷:tOB

7.2.37

Xs(i+l) = X0B + (ts(i+l) - roB)(Us(i+i + as(i+l )

7.2.35

In region (I,I)

from 7.2.28 and maintaining contact surface.

u(i,l ) = Us(i )

a(l,l ) : as(i )

7.2.39

7.2.40

Position (I,I)

from 7.2.2

t(l,l ) =

X

_(I) -g- ts(i ) (U(l,l) + a(l,l ))

(_p -i
2 ) u(i,i) - a(l,i)

x(i,i ) = t(l,i ) (_--_2+i) U(l,l ) +_ 7.2.142
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In region (i,l)

from 7.2.28 and maintaining contact surface

u(i+i,l) : Us(i+l)

a(i+l,l)= as(i+1)[ B -I

7.2 ._3

7.2.44

Position (i,l)

from 7o 2.2

t(i+l,1)
x(i, l)-Xs(i+l)-U(i+l,l) (t(!,l)-ts(i+l))

2 a(i+l, i )

I l)+t )+ _ (t(i, s(i+l)
7.2.45

x(i+l,l) : ×s(i+l) + (t(i+i,l) -t s(i+l) ) (u(i+l,l)+a(i+l,l))

7.2_46

The equations 7.2.16 to 7.2,27 of the previous analysis will

still apply to determine the shock interaction with the

now non-centred rarefaction wave in the pellet region.

Figures 7.2.% to 7.2,6 show the decay of

the pellet shock as a function of density ratios from

0.I - I0 for three values of _ (2.0, 3.0, 4.0). As in

figure 7.2.3,the shock pressure decay is plotted in non-

dimensional form of P vs. x/_. The position of the

A_ v2
shock relative to 2 the bumper is also shown. It can
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be seen from these curves that the shock pressure decay is

less for greater bumper densities and larger bumper thickness.

From the curves 7.2.3 - 7.2.6 the critical

length of pellet which will be vapourized by the impact

shock can be determined. A very conservative critical

pressure of 1.5 x 10 6 psi was chosen as the value below

which the_pellet material would not vapourize. The tempe-

rature in the plasma was assumed to be above the critical

value even with shock decay. Figure 7.2.7 shows the

critical pellet length as a function of bumper thickness,

impact velocity and density ratio. The minimum weight

of bumper can be determined by taking various density

ratios and their equivalent bumper thicknesses required to

vapourlze a given pellet.

It should be remembered that in figures

7.2.3 - 7.2.7 the radial rarefaction waves were not

considered and hence the shock decay estimated will be

less than would be expected in the actual physical case.

7.2.2 Radial Rarefaction Wave

Without analyzing the effect of the inter-

action of the radial rarefaction with the pellet shock,

the critical pellet length cannot be predicted with

confidence. As mentioned in section 7.2.1 for certain
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conditions of _and_-'the shock will initially progress

upstream of the bumper for a period of time before being

swept downstream through the bumper due to the action of

_he axial rarefaction wave. During this period of time

radial expansion will occur and the radial rarefaction waves

will decay the shock.

The mathematical condition for the formation

of _R upstream of the bumper is (V- Wp) 40, where the

Jirection of V is considered positive. The conditions

specifying the magnitude and direction of (V-Wp) are found

by comparing equations 14, 15 and 16 from reference I, viz.

_L +I

Wp - 2 Up , 7.2.48

V

UB = +l'_B +1 ['JBo4'

7.2.48

an d Up i
7.2.49

which when combined yield,

Wp 2

V

+i _Bo +i

7.2.5o
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For convenience, set

Noting that if _ _i, then _- _o ; note also that

for most combinations of pellet/bumper combinations considered,

and for low density meteoric impacting on metallic bumper

plates,

Thu s, Wp

+I
:__ V

@' +I 2'
7.2.52

7.2.53

a = _ V

P 2 (_0 +I
, 7.2.54

and (V-Wp) : (I - 1 _p +i
__, +i ) V. 7.2.55

For Wp> V, _P +I > 2
<_J +i

or _p>2_ + 1 7.2.56

If the pellet and bumper have equal densities

and _ 's, then for (V-Wp)< O, _ _ 3. If the bumper

material is more dense than the pellet and (_p +I)/(_ B +i)_],

then _<i and (V-Wp)_O for _< 3. For very light meteors

impacting on, say, an aluminized mylar bumper, _-' may be
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very small so that (V-wp)_0 for any real value of _ ; viz.

for_' = 0.I, Wp_V for _p_1.2. From the point of view

of eliminating the cylindrical rarefaction decay it is

apparent that _I _I is desired, however, since the strength

of Sp and hence its destructive power is inversely pro-

portional to_-', the length of pellet destroyed _or any

given V is also inversely proportional to_ -!

Consider the following sketch, (figure 7.2.7).

The disturbance originating at position (o, yo ) at time

t=o will, after a time dt, be characterized by a circular

front of radius ap dt, centred at ((V-Up)dt, yo). The

¥

V

IT-

-lL_

_ _ I i" jl I

r

×
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circular front then is described by

(x- (V-Up) dt)2 + (y-yo)2

at time dt.

is given by

The position of the shock

L

x= (V- w) dt
P

Sp

2 dt 2
= ap

7.2.57

at time dt

7.2.58

The point of interaction of the shock and the head of the

rarefaction, is found by combining 7,2.57 and .58 to yield

y yo + _ap 2 (Wp-Up)_'= - dt ; x=
(V-Wp) dt

7.2.59

The point at which the influence of JR C has been extended

to include the entire shock wave, that is, where the head

I

of
_R C intercepts Sp at y=o, is given by

n

Yo = - @ aP 2- (Wp- Up) _- dt 7.2.60

- (V-wp)Yo
x= 7261

_ap 2 - (Wp-Up) 2 " .

This reduces to

x _ +l - 2(_ +1)
: -- 7.2.62

Yo "j (_+l ) (_'-1)

when 7.2.61 is combined with equations 14 - 16 of reference i

and equation no. 7.2.51.
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Figure 7.2.8 is a plot of x/y ° vs. _ andS'

(solid lines). Note that (X/y o) is measured from the

bumper plate front face and thus gives the distance between

that face and p for complete influence by Rc.

Z..---

The position of the wave Sp from the rear

face of the pellet for the above situation, assuming the

pellet length is _o' is given by

x Q
Yo o - _ _._± Yo

7.2.63

since in the time dt taken by the wave to reach the pellet

centre line the pellet has moved a distance

v Yo 2 +I)
Vdt =

2 II

7.2.64

Note that G-i does not appear in this expression, hence

!

the overtaking and decay of Sp by _R c is independent

of the pellet and bumper densities, and depends only

On_p. In figure 7.2.8 equation 7.2.63 is shown (dotted

lines) along with equation 7.2.62. Note that for _ = 3,

regardless of the density ratio, over 70_ of the pellet is

consumed by Sp (at the pellet axis) before feeling the

influence of_ R c, if _o = 2Yo"

l
For _: 3, _': i,

W_-

Sp

(X/Yo)re I = O, that is,

remains fixed at the exit plane. For _= 3+_ where
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,---6"

o / 4
/

/ 3

L ,

Distance to dotted line (measured from x/y o = 0)

represents the absolute distance travelled by the shock

!

Sp before the rarefaction wave ._Rc indluences the

entire shock. Note that this distance is a function

of _only not of _- (equation 7.2.63).

Distance do solid line represents the distance relative

to the front face of the bumper plate travelled by Sp

before being influenced entirely by JR c (as function

of both -f andC_-)(equation 7.2.62).

]_T_ACTi_ BET_Ea_ ;'_p ¢ /R: 6PsTI_EAM aF BOMPER

_c._ '7,z, _
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g_--
Sp also remains essentially fixed at the impact1

plane x = -_, however, an _R c wave is generated since,

in fact, the position of Sp is x = - +_t). Some

radial pellet flow must occur on the front face of the

bumper for _ = 3 +_, thus the pellet shock must expe-

rience decay by the action of the cylindrical expansion.

The above analysis is valid only if the

cylindrical expansion is assumed to emanate from the

point x = -_, Y=Yo on figure 7.2.1, that is, at the

geometrical junction between the front face of the bumper

and the pellet periphery. If, as is most probable in

any real interaction, the pellet is destroyed at the

g_-
periphery by Sp as well as in its interior, the origin

of R e will follow some distance behind Sp, the lag

depending on the ratio of the rates of radial to axial

decay. The head of JR c will not be affected by the

motion of the point of origin, but its internal structure

and hence the rate of radial and axial decay of Sp will

be influenced by this factor.

As the edge of the pellet shock decays,

due to radial rarefaction wave interaction, it's speed

will fall and it will tend to move back into the bumper,

so cutting off the rarefaction. In fact, the pressure

behind the shock will fall until the velocity equals

that of the pellet and the shock will remain a short
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distance ahead of the bumper, leaving a narrow slot for

the high pressure gas to escape. The pressure behind

the outer edge of the shock required to maintain this

(_+_ _ V2 from equation 5 of reference ishock speed will be ) o

setting Wp = V; for _= 4, the initial shock pressure

(__l_pV 2) is _p V 2, and the ratio of pressure behind

the decayed shock to that behind the undecayed shock is

16/25 or .64. As the main part of the shock gets further

ahead of the edge and the shock surface becomes inclined

to the pellet velocity, the shock can d_cay further,

as seen in figure 7.2.9. If the shock stabilized at

some angle @, so then w = Vcos@. p = 2 D V2 cos 2

P +i ] Po

and if @ = 45 °, the shock pressure will have dropped by

a further factor of two.

/

From the analysis of the interaction of the

reflected rarefaction wit_ the shock, the shock travels

a distance of about 1.5 bumper thicknesses before

reversing direction, so that for thin bumpers, the
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angle @ is likely to be less than 45°. Consequently the

shock decay by a cylindrical rarefaction ahead of the

bumper is not likely to be the limiting factor in pellet

destruction.

The shock will eventually pass downstream

of the bumper in all cases due to the interaction with the

axial rarefaction wave. The length of pellet that will be

shocked before the radial rarefaction wave downstream of

the bumper reaches the centre of the pellet can be

determined from the previous axial and radial rarefaction

wave analysis. The time for the pellet shock to move

just downstream of the bumper and the shocked state at

this moment can be obtained from figures 7.1.3 - 7.1.7 for

the axial rarefaction interaction with the shock. Then

using the analysis for the radial rarefaction interaction

equations 7.2.13 - 7.2.17 the length of pellet fed

into the pellet shock before the radial rarefaction reaches

the centre of the pellet can be calculated. Figure 7.2.10

shows the length of pellet that is shocked as a function

of the radius of the pellet and _ for _-= i.

It can be seen from figure 7.2.10 that the

radial rarefaction wave downstream of the bumper will not

reach the centre of the pellet before it is consumed if

it has an L/D ratio less than 2. (taking _= I and _ _ 2).

It is certain that, as long as the pressure in the core
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of the shocked pellet and inside the radial rarefaction

wave is of the order of a million pounds per square inch

any unvapourized skin which might result from edge decay

of the shock will be fragmented as a result of this

internal pressure. Therefore it has been assumed for

the present that the decay of the pellet shock due to

the radial rarefaction waves will not limit the critical

length of pellet providing the L/D ratio of the pellet

is _ 2. A computer program is now being written for

the decay of the pellet shock due to the radial rarefaction

wave interaction based on a stepwise analysis in the

radial and axial directions.

7.3 Long Term Expansion

The analytical and numerical analyses for

the expansion of the gas flow in the one and two dimensional

regions behind the bumper are limited by the assumption

that pellet material is continually feeding into the pellet

shock and thereby supplying compressed material to the

expansion wave. For short pellets (L_D = 1-2) the gas

cloud is still less than two diameters behind the bumper

when the last of the pellet is vapourized by the shock;

after this the gas cloud expands without a continuous

supply of shock material.
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The gas flow expansion for large distances

downstream of the bumper was analysed approximately

using the method of Stanyukovich (Ref. 5) for the expansion

of a sphere of compressed gas into a vacuum. This

approximation may be seriously in error if the plasma

produced by the impact exhibits considerable cohesion

and acts more like a fluid metal being bound together by

the free electrons in the lattice of positive ions, than

a gas (ref. 7). However Bauer, Cook and Keyes (Ref. 8)

show that if a detonation generated plasma is compressed,

on subsequent expansion it overexpands past its equilibrium

size, becomes unstable as recombination occurs, and

explodes. If this explosion occurs in all directions,

then the expanding sphere analysis would seem to be

a useful one.

The instant the spherical boundary of a

compressed gas is released into a vacuum a rarefaction wave

is initiated at the original boundary. The particles

originally forming the boundary travel outwards at escape

velocity while the head of the wave will move into the

compressed gas at the local speed of soundjuntil it

reaches the centre. Up to this time the material

enclosed by the wave head is unchanged. Once the

wave reaches the centre it will be reflected as a
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spherically expanding rarefaction (without such a reflected

wave an expanding void would be produced at the centre),

and the density inside the wave then decreases with time.

Stanyukovich discusses the distribution of

density and velocity in the gas cloud both for short

times before the head of the rarefaction wave reaches the

centre, and for long times when general decay has taken

place. An analytical solution is apparently impossible

(p. 498, Ref. 5) but several approximations are suggested,

appropriate to various times. Since a long time solution

was required for this analysis equations 63.22 and 63.23

were used, taking N=2 for spherical symmetry.

ur = r/t for r____aot i.e. r 7.3.1max

and

ur = o for r _ aot

(aot)3
7.3.2

where A and Y were evaluated by Stanyukovich using the

conservation of mass and energy.

Y = 3_+ z 7.3.3

A : (_ Y+3): _ 3 1y_ (y+l):2(2Y+l)( )
7.3.4

Mo, the total mass remains constant.
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Momentum is not conserved in the above

equation for density but Stanyukovich estimates a maximum

error of only +I0_. The accuracy of his equations could

be checked by programming an expanding sphere based on the

conservation of mass, momentum and energy.
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It is not possible to use a single expanding

sphere approximation, because it does not match the short-

time flow given by the cavity-flow model. This model

showed that the axial escape velocity to the right was

(_i) ap B (which will also be that to the left) whereas
° ' .
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the radial escape velocity is _---72( 2_ ap,B). The gas

cloud will therefore have the approximate shape of an

ellipsoid with an eccentricity of 2, if _ = 3. To estimate

the momentum distribution with time and radius at various

large distances behind the bumper, the flow in two spheres
J

was calculated, one expanding 2 times as fast as the

other, as shown in figure 7.3.1. Along the axis, the

initial rise in momentum density and flux is given by the

larger sphere. However, this model underestimates the

density for later times, since it assumes a much greater

expansion of the cloud, and the momentum flux and density

are obtained from that of the "inscribed" sphere

distribution, allowing for the fact that this model

overestimates the density.

0nly the axial component of momentum was

calculated, the radial component may give rise to some

scouring but the pressure generated on the witness plate

will be the result of the axial component only.

Referring to figure 7.3.2 the centre of the

sphere was assumed to be moving to the right with a

velocity of Uo; the velocity of the shocked material.

This assumption is valid only if the shock strength decay

is neglected. A computer program was set up to determine

the stagnation pressures a witness plate would experience

from the following numerical analysis.
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Values of _I, _Bo, V, D, and S were chosen

for typical ranges that would be expected in meteor

impact, i.e. _ = 2-'_3.33, _B = 3 gm/cm3, V = 20_- 80 km/sec,
0

D = I cm, S : I0-_300 cm. From these given values the

constants, Uo, ao, _o' Y' A, ti, _t, and M o can be

calculated as follows.

V

uo - assuming IO2 Po

ao = uo -_I_(_-I)
2¥

: _B o 7.3.5

7.3.6

_o = jgBo ;_+i_ assuming limiting density

ratios 7.3.7

Y = 3 _ + 2 Stanyukovich 7.3.8
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A
(2Y + 3)_

Y:(Y+1)_2(2_+l)

ti = s
2

Uo+_ ao

( )

Stanyukovlch 7.3.9

7.3.10

i (ao)tl
i0 u o _--l

for centre of sphere

to reach plate in

i0 _t 7.3.11

assuming shocked

plasma originally

occupies a spherical

volume with a radius

D/2 7.3.12

Now, knowing the above constants, the _L.

stagnation pressure for a sphere on the witness plate

can be determined as a function of time and radius from

the centre axis of the sphere travelling in the directions

of impact.

at any time t = t i + m_t

where n, varies from i - 20

X = S - Uot

r : aot (_--_21)max

J

_-r2ma x
r' = -x 2

max

At' : r' /
max/lO

where r'
max

increments

is divided into I0
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and at any r' = m _r'

where m varies from I - i0

MoA r2 Y 3__ 2

- (Ymax),3 (i r2 ) (_-y)
max

= 2 ao t 7.3.13
for rma x

U =-_--+ i/O
T

axial momentum density

axial momentum flux

and stagnation pressure Po = ½_ u2 + P

where p = _a 2

_-I

and a = ao,(_o__), 2

A new value for ao = ao (_2)
_+i is then

calculated for the expansion of the small sphere and the

computations repeated.

The peak stagnation pressure for the small

(radial expansion) sphere and the large (longitudinal

expansion) sphere were then plotted as a function of the

time after impact for 6 values of _ (1.67 - 3.33),

(figures 7.3.3 - 7.3.8). The stagnation pressure for

the elliptical expansion was then sketched in by hand

with: the large sphere expansion dominating at the

7.3.16

7.3.17

7.3.18
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extreme ends of the expansion and the small sphere

dominating at the centre. It can be seen from figures

7.3.3 - 7.3.8 that the smaller the value of _ the more

accurate will be the approximation to the elliptical

expansion.

Figure 7.3.9 shows the non-dimenslonal peak

Po (_)3 variation

centreline pressure coefficient 21 _ V2

with the non-dimenslonal time "B° coefficient t/(s/D)--

for various values of _ . The maximum pressure and the

maximum rate of application of pressure on the witness

plate can be determined from this figure for known values

l_Boof , S, D, and V. It can be seen that the peak

pressure and rate of application will increase as _, _,

V, D increase and s decreases.

Figure 7.3.10 shows the radial distribution

of the peak pressure of the expanding ellipse for a

particular case with different values of _. The

radial distribution indicates a general Gaussian error

curve which varies approximately as the cube of the

radius. The integration of the area under the curve

would give the maximum total force acting on the witness

plate.

pressure vs. spacing for two impact velocities.

Figure 7.3.11 shows the variation in peak

The
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